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ABSTRACT 
 
 

nderstanding the insulin signaling cascade provides 
insights into the underlying mechanisms of 
biological phenomena such as insulin resistance, 
diabetes, Alzheimer’s disease, and cancer. For this 
reason, previous studies utilized chemical reaction 

network theory to perform comparative analyses of reaction 
networks of insulin signaling in healthy (INSMS: INSulin 
Metabolic Signaling) and diabetic cells (INRES: INsulin 
RESistance). This study extends these analyses using various 
methods which give further insights regarding insulin signaling. 
Using embedded networks, we discuss evidence of the presence 
of a structural “bifurcation” in the signaling process between 
INSMS and INRES. Concordance profiles of INSMS and 
INRES show that both have a high propensity to remain 
monostationary. Moreover, the concordance properties allow us 
to present heuristic evidence that INRES has a higher level of 
stability beyond its monostationarity. Finally, we discuss a new 
way of analyzing reaction networks through network translation. 
This method gives rise to three new insights: (i) each 

stoichiometric class of INSMS and INRES contains a unique 
positive equilibrium; (ii) any positive equilibrium of INSMS is 
exponentially stable and is a global attractor in its stoichiometric 
class; and (iii) any positive equilibrium of INRES is locally 
asymptotically stable. These results open up opportunities for 
collaboration with experimental biologists to understand insulin 
signaling better. 
 
 
INTRODUCTION 
 
In healthy cells, insulin signaling regulates glucose metabolism 
(Norton et al. 2022). Impaired insulin signaling, however, can 
lead to insulin resistance (Pessin and Saltiel 2000), which can 
then lead to increased risk of diabetes, Alzheimer’s disease, and 
cancer (Akhtar and Sah 2020; Shieh et al. 2020; Tsugane and 
Inoue 2010). To gain insights into how this important signaling 
pathway functions, several mathematical models have been 
constructed for both healthy (Sedaghat et al. 2002) and insulin-
resistant cells (Braatz and Coleman 2015; Brännmark et al. 
2013; Nyman et al. 2014). As their contribution to this 
understanding of the pathway, Lubenia et al. (2022; 2024) 
performed a reaction network analysis of insulin signaling in 
healthy and type 2 diabetes cells using Chemical Reaction 
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Network Theory (CRNT). In this paper, we (i) extend and 
deepen their comparative analysis using methods that utilize 
embedded networks, concordance profile, and network 
translation; and (ii) illustrate how to use our mathematical 
results to address a broader audience, especially experimental 
biologists and clinical researchers, to explore potential 
collaboration. 
 
Lubenia et al. (2024) observed key differences in the reaction 
networks of insulin signaling in healthy (INSulin Metabolic 
Signaling or INSMS) and insulin-resistant cells (INsulin 
RESistance or INRES). Among them was the number of species 
interacting in the signaling cascade of the two networks. A more 
important observation was that key species in the insulin 
signaling pathway lose their absolute concentration robustness 
when insulin resistance occurs. They showed this based on the 
reaction network’s decomposition and equilibria 
parametrization, the latter leading to ideas for therapeutic 
approaches for further exploration. This paper explains other 
ideas on how to use our main results to collaborate with 
experimental biologists and clinical researchers. 
 
In this study, we utilized new methods which were developed to 
compare and gain insights into different reaction networks 
representing the same signaling pathway. First, we apply the 
common species embedded networks analysis which utilizes 
embedded networks with respect to the networks’ set of 
common species (Hernandez et al. 2024a). The second method 
we used is the concordance profiles analysis wherein we 
compare the various concordance properties of INSMS and 
INRES (Hernandez et al. 2024b). Finally, we introduced 
network translation analysis in this paper which leads to insights 
regarding the equilibria distribution and stability of reaction 
networks. 
 
Our study yielded five major results. The first one is the presence 
of a structural “bifurcation” in the processing between healthy 
and diabetic cells, i.e., a divergence in the processes at some 
point. The second result is our presentation of heuristic evidence 
that INRES has a higher level of stability beyond its 
monostationarity. Third, in both INSMS and INRES, we observe 
that each stoichiometric class contains a unique positive 
equilibrium. Fourth, for INSMS, any positive equilibrium is 
exponentially stable and is a global attractor in its stoichiometric 
class. Finally, we were able to conclude that any positive 
equilibrium of INRES is locally asymptotically stable. These 
results open up the opportunity for collaboration with 
experimental biologists to gain further insights regarding insulin 
signaling. 
 
This paper is organized as follows: the next section reviews the 
results of the comparative analysis of reaction networks of 
insulin signaling by Lubenia et al. (2024); the succeeding three 
sections detail the comparative analyses of INSMS and INRES 
based on their common species, concordance profiles, and 
network translations; the final section deals with the summary 
of our findings and outlook for future studies. A Supplementary 
Material is available for readers who wish to brush up on CRNT. 
It also includes the details of the reaction networks used in this 
paper. 
 
 
RESULTS OF THE INITIAL COMPARATIVE 
ANALYSIS 
 
We provide in this section a brief overview of the findings of the 
comparative analysis already done regarding reaction networks 
of insulin signaling. We refer to the reaction network of insulin 
signaling in healthy and diabetic cells as INSMS (INSulin 
Metabolic Signaling) and INRES (INsulin RESistance), 

respectively. 
 
Using Chemical Reaction Network Theory (CRNT), Lubenia et 
al. (2022) performed a reaction network analysis of INSMS 
while Lubenia et al. (2024) did the same in the case of INRES. 
The latter also performed a comparative analysis of the two mass 
action networks (see Supplementary Material for a brief review 
of chemical kinetic systems). Table 1 presents a summary of 
some of the findings. The two studies helped establish the 
usefulness of CRNT in gaining insights regarding biological 
processes. The authors observed that both networks were 
monostationary, i.e., a unique positive equilibrium (i.e., long-
term behavior) exists for each choice of rate constants in the 
networks’ ordinary differential equations. It was also discovered 
that INRES is conservative while INSMS is not (see Remark 2 
for the implication of this observation on the translations of the 
networks). More importantly, the studies highlighted three 
principal differences between insulin signaling in healthy and 
diabetic cells: 
 

(i) In INSMS, eight species were determined to exhibit 
absolute concentration robustness (ACR) while none 
were found in INRES. ACR refers to the invariance of 
a species’ concentration across all positive equilibria 
in a kinetic system. In particular, in the healthy cell 
model, the intracellular glucose transporter GLUT4’s 
ACR suggests that maintaining a stable level of 
GLUT4 could be advantageous in addressing insulin 
resistance, facilitating efficient glucose transport into 
the cell. The equilibria parametrization of the 
concentration of GLUT4 presented by Lubenia et al. 
(2024) for the insulin-resistant cell model reveals that 
the concentration relies on the concentration of other 
species within the system. One can possibly work in 
close cooperation with experimental biologists to 
assess whether the concentration of these species can 
be altered to move the value of GLUT4 to that under 
healthy conditions. 
 

(ii) There is a significant difference in the set of species 
involved in insulin signaling in the two cell states. 
This also points to strongly differing processing 
modules in the two systems. The section Common 
Species-Based Comparative Analysis further 
quantifies these observed difference. 

 
(iii) INRES loses the concordance exhibited by INSMS. 

The section Concordance Profiles-Based Comparative 
Analysis significantly extends and qualifies these 
results. 

 
Table 1: Summary of some properties of INSMS and INRES 

INSMS INRES 
Monostationary 

Not conservative 

8 ACR species (out of 20) 

Concordant 

Conservative 

No ACR species (out of 32) 

Discordant 

 
In relation to the first principal difference, it is particularly 
significant that the glucose transporter GLUT4 loses its ACR in 
INRES. This is consistent with experimental findings of lower 
GLUT4 level in insulin signaling in type 2 diabetes (Chen et al. 
2003). Furthermore, the authors’ analysis via finest independent 
decomposition (FID) and equilibria parametrization revealed 
new insights regarding which species concentrations determined 
the concentration of GLUT4 in equilibrium. Collaboration with 
experimental and clinical researchers could clarify if there are 
experimental approaches that can influence these values to 
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restore approximate concentration robustness at the healthy 
levels. 
 
In the next two sections, we analyze in greater detail the second 
and third principal differences in insulin signaling in healthy and 
insulin-resistant cells: differences in species sets and 
concordance. 
 
 
COMMON SPECIES-BASED COMPARATIVE 
ANALYSIS 
 
Hernandez et al. (2024a) introduced the method common 
species embedded networks analysis. In this section, we apply 
this method on INSMS and INRES. The concept of embedded 
networks is based on Joshi and Shiu (2013) (see Supplementary 
Material for a brief review of embedded networks). 
 
To implement the analysis, we follow the procedure outlined in 
Hernandez et al. (2024a). We perform only the first two steps 

since the last step described in the paper is not relevant to our 
study (see Remark 1): 
Step 1: Determine the common species of INSMS and INRES. 
Step 2: Remove from the reactions of INSMS and INRES all 
species not in Step 1. Trivial reactions, i.e., those whose reactant 
complex and product complex are the same, are also removed 
from the list of reactions. 
 
The species common to INSMS and INRES are 𝑋!, 𝑋", 𝑋#, 𝑋$, 
𝑋%, 𝑋&, 𝑋'(, 𝑋!(,  and 𝑋!' (see Supplementary Material for the 
definition of the variables used in INSMS and INRES). To 
derive the embedded networks of INSMS and INRES, we 
modify first the way the reactions of INRES are numbered so 
that common reactions with INSMS have the same numbering 
(see Supplementary Material for the list of reactions of INRES 
and their numbering as used in this study). Table 2 provides the 
result of Steps 1 and 2 of the analysis. 
 

Table 2: Common species embedded networks of INSM and INRES 

Common to INSMS and INRES 

𝑅':	𝑋! → 𝑋" 
𝑅):	𝑋$ → 𝑋! 
𝑅&:	𝑋# → 𝑋% 
𝑅'&:	𝑋'( → 𝑋& 
𝑅"':	𝑋!' → 𝑋!( 

Embedding-derived common reactions* 

𝑅!(* :	𝑋'( → 0 
𝑅!'* :	0 → 𝑋'( 
𝑅")* :	𝑋% → 𝑋$ 
𝑅$!* :	𝑋!( → 𝑋!' 

Unique to INSMS* Unique to INRES* 

𝑅!:	𝑋" → 𝑋! 
𝑅"*:	0 → 𝑋# 
𝑅#*:	𝑋# → 0 
𝑅+*:	𝑋" → 0 
𝑅$*:	𝑋! → 0 
𝑅%:	𝑋! → 𝑋$ 
𝑅'(:	𝑋% → 𝑋# 
𝑅'":	0 → 𝑋$ 
𝑅'#:	𝑋$ → 0 
𝑅'%:	𝑋& + 𝑋# → 𝑋'( + 𝑋# 
𝑅')* :	𝑋& → 𝑋'( 
𝑅"#:	0 → 𝑋!( 
𝑅"+:	𝑋!( → 0 

𝑅"$:	𝑋! → 𝑋# 
𝑅"%:	𝑋" → 𝑋# 
𝑅"&:	𝑋# → 𝑋! 
𝑅#(:	𝑋% + 𝑋& → 𝑋% + 𝑋'( 
𝑅#'* :	𝑋& → 0 
𝑅#+* :	0 → 𝑋& 

* The superscript 𝑬 refers to reactions derived from the embedding process

The results of the first two steps reveal additional interesting 
aspects of the structural differences between the models beyond 
the small set of common species (9 out of 20 for INSMS and 32 
for INRES). First, INSMS and INRES have a very small set of 
common reactions: 5 out of 35 (INSMS) and 44 (INRES). 
Second, there is only a small set of common reactions in their 
embedded networks: only four embedding-derived common 
reactions. And third, while most of the unique reactions of 
INSMS involve the common species, those of INRES do not. 
This is why, although INRES is larger, its embedded network is 
smaller (22 reactions for INSMS and 15 reactions for INRES). 
These results suggest that there is a structural “bifurcation” in 
the processing between healthy and diabetic cells, i.e., after a 

small initial common subnetwork, the insulin processing in 
INSMS and INRES separates into two subnetworks with entirely 
different species sets (resulting in different complexes and 
reactions) which converge only at the output molecule GLUT4. 
There appears to be a “tipping point” in the course of the disease 
when the signaling process switches from following that for 
healthy cells to that for diabetic cells. Joint efforts with 
experimental biologists can yield insights into this “tipping point” 
by examining the unique species in INRES (i.e., the ones 
removed to come up with the embedded network) and their role 
in insulin resistance. The team can also look into the altered 
reactions during the embedding process to determine their 
significance in the development of the cell’s resistance to insulin. 
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Remark 1: From Table 2, the common reactions of INSMS and 
INRES are 𝑅' , 𝑅) , 𝑅& , 𝑅'& , and 𝑅"' . The common reactions 
equilibria analysis developed by Hernandez et al. (2024b) does 
not provide any new insight since the network of common 
reactions is not positive dependent (this can be easily verified 
using the CRNToolbox (Feinberg et al. 2018), a Windows 
application which generates reports regarding some properties 
of chemical reaction networks). Positive dependence is a 
property that needs to be satisfied for a system to have positive 
equilibria (Shinar and Feinberg 2012). 
 
 
CONCORDANCE PROFILES-BASED COMPARATIVE 
ANALYSIS 
 
Hernandez et al. (2024b) introduced a novel approach, called 
concordance profile analysis, in comparing three models of Wnt 
signaling in healthy cells. Concordance is a network property 
that is related to the stability properties of positive equilibria of 
the network (see Corollary 10.7.3 of Feinberg (2019) and 
Proposition 2 in the next section for a detailed discussion). In 
this section, we compare INSMS and INRES based on their 
concordance profiles. 
 
We recall from Hernandez et al. (2024b) that the concordance 
(discordance) set FIDC (FIDD) of a reaction network is the 
union of all concordant (discordant) subnetworks of its FID (see 
Supplementary Material for a brief review of decomposition 
theory). For a non-empty FIDC, a maximal independent 
concordant subnetwork of the network is called a concordance 
core of the network. The concordance dimension c of a 
reaction network is the rank of a concordance core. The 
discordance dimension of the network is defined as 𝑑:= 𝑠 − 𝑐 
where s is the rank of the network. If the FIDC or the FIDD is 

empty, we set 𝑐 = 0 or 𝑑 = 0, respectively. The ratios ,
-
 and .

-
 

are called the concordance level and discordance level of the 
network, respectively. 
 
In his book, Feinberg (2019) highlighted the occurrence of mass 
action systems which, though discordant, remain 
monostationary. INRES, as previously shown, is such a system. 
Discordance, though, implies the existence of a weakly 
monotonic kinetics (see Supplementary Material for a brief 
discussion of weakly monotonic kinetics) on the network such 
that the kinetic system turns multistationary, i.e., the system has 
multiple equilibria for a given set of rate constants. In this sense, 
the concordance level of a network measures the propensity of 
weakly monotonic kinetics on it to remain monostationary. 
Concordant networks, such as INSMS, have a corresponding 
concordance level of ,

-
= 1 . Since the value of a network’s 

concordance level is from 0 to 1, attaining a value of 1 signifies 
that the network has the highest capacity to remain 
monostationary. 
 
Table 3 summarizes the concordance profiles of INSMS and 
INRES. We denote the 10 subnetworks of the FID of INSMS as 
𝒩/0121,', ⋯ ,𝒩/0121,'(  while the 12 FID subnetworks of 
INRES are denoted 𝒩/0451,', ⋯ ,𝒩/0451,'!. Each of their FID 
subnetworks are concordant; hence, the FIDC for both is the 
entire network. Since INSMS is a concordant network, its 
concordance core is itself. This implies a concordance level of 1. 
On the other hand, for the discordant network INRES, we 
provide a description of our conjecture below regarding its other 
concordance properties. 
 

Table 3: Concordance profiles of INSMS and INRES 
Concordance property INSMS INRES 

Concordance set 𝒩/0121 𝒩/0451 

Discordance set ∅ ∅ 

Concordance core 𝒩/0121 𝒩/0451\3𝒩/0451,+ ∪𝒩/0451,'!5* 

Concordance dimension 15 18* 

Concordance level 1 0.9* 

Discordance dimension 0 2* 

Discordance level 0 0.1* 
Expressions with * represent conjectures

Using the Concordance Report of the CRNToolbox, so far, we 
have verified only a rank 14 concordant subnetwork of the 
discordant network 𝒩/0451. Since 𝒩/0451 has a rank of 20, its 
concordance dimension is in the range 14 ≤ 𝑐 ≤ 19 . Our 
conjecture is that 𝑐 = 18 since we found a possibly concordant 
subnetwork of  𝒩/0451 , which has rank 18 and is injective, 
containing the concordant rank 14 subnetwork we identified 
earlier. Our conjecture for INRES implies a concordance level 
of about 0.9, which suggests a high level of stability (or 
propensity to remain monostationary) despite the very different 
processing pathway it has compared with INSMS. This seems to 
be consistent with the chronic character of insulin resistance 
(past a certain point), but this interpretation should be discussed 
in more detail with experts. 
 
 
NETWORK TRANSLATION-BASED COMPARATIVE 
ANALYSIS 
 
In this section, we introduce a new method called network 
translation analysis. We apply to INSMS and INRES the method 

developed by Hong et al. (2023) which identifies network 
translations that are weakly reversible and have zero deficiency 
while preserving their original dynamics. We do this by using 
the authors’ computational package TOWARDZ which is 
implemented in MATLAB. 
 
Running TOWARDZ did not yield any weakly reversible 
deficiency zero translation of INSMS and INRES within a 
reasonable time due to their sheer size. Hence, we utilized the 
FID of the networks and applied TOWARDZ on each of the 
subnetworks. The Supplementary Material shows a weakly 
reversible deficiency zero translation of each subnetwork of 
INSMS (denoted 𝒩#,/0121,7) and the corresponding translations 
for INRES (denoted 𝒩#,/0451,7 ). The translated subnetworks 
already constitute the FID of the weakly reversible deficiency 
zero translation of INSMS and INRES. We denote the union of 
the weakly reversible deficiency zero translations of the 
subnetworks of INSMS as 𝒩#,/0121 . Similarly, we denote as 
𝒩#,/0451  the union of the weakly reversible deficiency zero 
translations of the subnetworks of INRES. The following 
theorem provides a general justification of the preceding 
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considerations: 
 
Theorem 1 Let 𝒩 =𝒩' ∪⋯∪𝒩8  be an independent 
decomposition of a chemical reaction network 𝒩. Let 𝐾 be a 
kinetics on 𝒩 and 𝐾7  the restriction of 𝐾 to 𝒩7 . Furthermore, 
suppose each ;𝒩#,7 , 𝐾#,7< is a network translation of (𝒩7 , 𝐾7). 
Then 
 

(i) 𝒩# = 𝒩#,' ∪⋯∪𝒩#,8  is an independent 
decomposition; and 
 

(ii) (𝒩#, 𝐾#) is a network translation of (𝒩,𝐾). 
 
Proof: We first recall the concept of a network translation: for a 
kinetic system (𝒩,𝐾), we call ;𝒩? ,𝐾?< a translation of (𝒩,𝐾) 
if ∑ 𝐾9(𝑥)9:;!<;=> = ∑ 𝐾?9̃(𝑥)9̃:@!<@=>  for any 𝜉 ∈ ℤA  and 𝑥 ∈
ℝB(A  where 𝑟: 𝑦C − 𝑦 and 𝑟̃: 𝑧C − 𝑧 refer to the reaction vectors 
of reactions 𝑦 → 𝑦C and 𝑧 → 𝑧C, respectively. In both sums, note 
that the only nonzero summands are those for the corresponding 
reaction vector sets. If the left-hand side is for the system we are 
considering, since the decomposition is independent, we can 
write the sum as consisting of partial summands over the 

reaction vectors of the subnetworks 𝒩7 . Note that the 
independence is essential to ensure that the indices are distinct. 
After translating each subnetwork, we obtain for each a partial 
sum over the same indices since translation preserves the set of 
reaction vectors. Since translation also preserves the 
stoichiometric subspace, we also obtain an independent 
decomposition for the union of the translated subnetworks. 
Summing up the partial summands provides the claim. ∎ 
 
Table 4 summarizes the CRNToolbox results for 𝒩#,/0121 and 
𝒩#,/0451: both are positive dependent, monostationary, injective 
(see Supplementary Material for the mathematical definition; 
implications to be discussed below), nondegenerate, and their 
equilibria are globally asymptotically stable (interpretation to be 
discussed below). Furthermore, all their subnetworks are 
concordant. On the other hand,  𝒩#,/0451 is conservative while 
𝒩#,/0121 is not. The toolbox was able to conclude that 𝒩#,/0121 
is concordant; however, we are not able to make the same 
determination for 𝒩#,/0451 (the CRNToolbox was not able to 
generate a conclusion within a reasonable amount of time due to 
the high number of reactions involved). 
 

Table 4: Summary of CRNToolbox results for the weakly reversible deficiency zero translation of INSMS (𝓝#,𝐈𝐍𝐒𝐌𝐒) and INRES (𝓝#,𝐈𝐍𝐑𝐄𝐒) 
Property 𝒩#,/0121 𝒩#,/0451 

Positive dependent Yes Yes 

Conservative No Yes 

Monostationary Yes Yes 

Equilibrium asymptotically stable Yes Yes 

Injective Yes Yes 

Concordant Yes ? 

Nondegenerate network Yes Yes 

Remark 2: In view of Theorem 1 and the results of Talabis and 
Mendoza (2024), positive dependence and conservativeness of 
the network translations follow from the corresponding 
properties of the original networks. Furthermore, the local 
asymptotic property of the equilibria derives from the 
Deficiency Zero Theorem of Horn and Jackson (1972) for mass 
action systems (see Supplementary Material for a statement of 
the theorem). 
 
Properties of INSMS and INRES derived from network 
translation 
 
For networks with mass action kinetics, such as INSMS and 
INRES, the existence of weakly reversible network translations 
enables the inference of interesting properties in equilibria 
distribution and equilibria stability of the original networks. For 
comparison clarity, we formulate the inferred results in three 
different propositions. First, we show the similarity in equilibria 
distribution. 
 
Proposition 1 For both INSMS and INRES, each stoichiometric 
class contains a unique positive equilibrium. 
 
Proof: We first utilize the Hars-Tóth criterion (Theorem 4 of 
Chellaboina et al. (2009)) to check that each translated FID 
subnetwork of INSMS and INRES follows mass action kinetics. 
Consider the system of ordinary differential equations (ODEs) 
𝑥̇ = 𝑓(𝑥) = (𝐵 − 𝐴)D(𝑘 ∘ 𝑥E) , where ∘  represents 
componentwise multiplication, 𝐴 = Q𝑎7FS , 𝐵 = Q𝑏7FS , 𝑘 =
[𝑘', ⋯ , 𝑘9]D , 𝑥 = [𝑥', ⋯ , 𝑥A]D , and 𝑥E  is the element of ℝA 
with 𝑖 th component 𝑥'

G*+⋯𝑥A
G*,  for 𝑖 = 1,⋯ , 𝑟  and 𝑗 =

1,⋯ ,𝑚. The criterion guarantees that the set of ODEs has a 

mass action system realization of the form 𝐴𝑋
8
→𝐵𝑋 provided 

that for each 𝑗 = 1,⋯ ,𝑚 , 𝑓F;𝑥', ⋯ , 𝑥F<', 0, 𝑥FH', ⋯ , 𝑥A<  is a 
multivariate polynomial with nonnegative coefficients. We 
observe that through the FID, we obtain an expression for the 
right-hand side of the ODE 𝑥̇ = 𝑓(𝑥) as a sum of partial sums 
𝑓 = 𝑓' +⋯+ 𝑓8  where 𝑓7 = 𝑁7𝐾7  ( 𝑁7  is the stoichiometric 
matrix of subnetwork 𝑖 and 𝐾7 is the vector of rate functions of 
the subnetwork) for each 𝑖 . Thus, applying the Hars-Tóth 
criterion on each subnetwork is sufficient. 
 
We apply the criterion to each subnetwork by taking the ODEs 
relevant to the subnetwork. For example, 𝒩/0121,+ involves the 
reactions 𝑅!!:	𝑋'# + 𝑋'! → 𝑋'" + 𝑋'!  and 𝑅!":	𝑋'" → 𝑋'# 
with corresponding rate functions 𝑘!!𝑥'#𝑥'!  and 𝑘!"𝑥'" , 
respectively. The ODEs in INSMS of the three species in the 
subnetwork involving the two reactions are 𝑥̇'! = 0 , 𝑥̇'" =
𝑘!!𝑥'#𝑥'! − 𝑘!"𝑥'", and 𝑥̇'# = 𝑘!"𝑥'" − 𝑘!!𝑥'#𝑥'!. Since 𝑥'! 
is a constant, we can include it in the rate constant for the rate 
function of 𝑅!! as 𝑘!!# 𝑥'# where 𝑘!!#  is a constant. Thus, we can 
consider the ODEs 𝑥̇'" = 𝑘!!# 𝑥'# − 𝑘!"𝑥'" , and 𝑥̇'# =
𝑘!"𝑥'" − 𝑘!!# 𝑥'#. Applying the Hars-Tóth criterion to this set of 
ODEs, we get the corresponding realization consisting of 
𝑅!!# :	𝑋'# → 𝑋'"  and 𝑅!":	𝑋'" → 𝑋'#  which is similar to the 
reaction network of the translated network 𝒩#,/0121,+. The same 
process can be used to verify mass action kinetics for the other 
translated subnetworks. 
 
Now, by the Deficiency Zero Theorem, each of the translations 
generated using TOWARDZ has a unique positive equilibrium 
in each stoichiometric class. Since both the set of positive 
equilibria and the set of stoichiometric classes are preserved by 
network translation, both INSMS and INRES have these 
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properties, too. ∎ 
 
Proposition 1 matches the nature of experimental values 
Sedaghat et al. (2002) and Nyman et al. (2014) measured in their 
studies, i.e., the species involved in INSMS and INRES have 
nonnegative concentration values. 
 
Remark 3: The existence of a positive equilibrium in each 
stoichiometric class for INSMS was shown in Lubenia et al. 
(2022) by the computation of an explicit equilibria 
parametrization. For INRES, this refinement of its 
monostationarity is a new result. 
 
For the comparison of stability properties, we state two separate 
propositions to highlight the differences. We lay out here first 
the various results we need from Feinberg (2019): (i) Theorem 
10.6.17 implies that a nondegenerate network with a concordant 
fully open extension is concordant; (ii) Corollary 10.7.3 shows 
that the positive equilibria of nondegenerate networks, whose 
fully open extension is concordant, have negative real 
eigenvalues; and (iii) Theorem 10.7.2 connects concordance and 
(exponential) stability of equilibria (i.e., the capacity of species 
concentrations to return to equilibrium despite disturbances to 
their concentration levels) of networks with differentiably 
monotonic kinetics (see Supplementary Material for the 
definition). Thus, the main result we utilize in this study says 
that for a special class of concordant networks, for any 
differentiably monotonic kinetics, all positive equilibria are 
exponentially stable. On the other hand, in a discordant network, 
there is “built-in” instability as detailed in Theorem 10.7.7 of 
Feinberg (2019). We obtain the following striking stability 
results regarding INSMS. 
 
Proposition 2 For INSMS and any mass action kinetics: 

 
(i) Any positive equilibrium is exponentially stable; and 

 
(ii) any positive equilibrium is globally asymptotically 

stable, i.e., a global attractor in its stoichiometric 
class. 

 
Proof: 
 

(i) CRNToolbox reports for INSMS state that the 
network is nondegenerate and its fully open extension 
is concordant. Since any mass action kinetics is 
differentiably monotonic, it follows from Corollary 
10.7.3 of Feinberg (2019) that all its positive equilibria 
are exponentially stable. 

 
(ii) The Deficiency Zero Theorem for mass action 

systems implies that 𝒩#,/0121  has a locally 
asymptotically stable positive equilibrium in each 
stoichiometric class. Moreover, Shinar and Feinberg 
(2012) showed in their Remark 6.5 that the Global 
Attractor Conjecture (see Horn and Jackson 1972) 
holds for concordant weakly reversible networks with 
zero deficiency. Hence, the claim follows for the 
network translation of INSMS as well. ∎ 

 
The global asymptotic stability of equilibria of INSMS in 
Proposition 2 suggests that the system will always go back to its 
equilibrium state despite variations in the concentrations of the 
species within the system. Thus, a person’s functioning insulin 
signaling remains so even in changing conditions in the body, 
except probably in extreme situations. For INRES, we can 
currently claim only the following: 
 
Proposition 3 For any mass action kinetics on INRES, any 
positive equilibrium is locally asymptotically stable. 

Remark 4: This can be easily verified using the CRNToolbox. 
 
Proposition 3 suggests that in order to stabilize the 
concentrations of the species in the insulin signaling network for 
a diabetic cell, specific criteria or conditions must be observed. 
Collaboration with biologists can explore the possibility of 
controlling some biomarkers of insulin resistance through drug 
intervention. 
 
Remark 5: The qualification “currently” refers to two aspects. 
First, we cannot settle the question of concordance of 𝒩#,/0451 
with our current tools. Secondly, to our knowledge, the Global 
Attractor Conjecture has been proven only in several cases for 
discordant networks, none of which hold for 𝒩#,/0451. 
 
 
SUMMARY AND OUTLOOK 
 
This study extended the analysis of reaction networks of insulin 
signaling in healthy cells (INSulin Metabolic Signaling or 
INSMS) and in type 2 diabetes (INsulin RESistance or INRES) 
by Lubenia et al. (2022; 2024). We utilized three methods of 
analysis to gain further insights into the said networks: 
comparative analyses based on embedded networks, 
concordance profiles, and network translations. 
 
Through a common species-based comparative analysis, our 
results suggested that there is a structural “bifurcation” in the 
processing between healthy and diabetic cells, i.e., there may be 
a point where the insulin processing in INSMS and INRES split 
into two subnetworks with different species sets and only 
converge at GLUT4. This pointed to “tipping points” in the 
course of the disease. On the other hand, concordance profiles-
based comparative analysis allowed us to present heuristic 
evidence that a higher level of stability exists in INRES. We also 
presented here the interpretation of a network’s concordance 
level as a measure of the propensity of weakly monotonic 
kinetics on the network to remain monostationary. Finally, we 
introduced a network translation-based analysis which gave rise 
to three new insights regarding INSMS and INRES: (i) each 
stoichiometric class of INSMS and INRES contains a unique 
positive equilibrium; (ii) any positive equilibrium of INSMS is 
exponentially stable and is a global attractor in its stoichiometric 
class; and (iii) any positive equilibrium of INRES is locally 
asymptotically stable. 
 
Our results provide opportunities for mathematicians to 
collaborate with experimental biologists to gain more insights 
into insulin signaling. In particular, to determine the “tipping 
point” between a healthy cell and an insulin-resistant one, a team 
of mathematicians and biologists can look into the species that 
have been removed and the reactions that have been altered in 
the construction of the embedded network of INRES. They can 
also look into the source of the high concordance level of INRES 
which seems to be consistent with the chronic character of 
insulin resistance (past a certain point). Finally, the collaboration 
can also explore drug interventions to control biomarkers that 
may stabilize insulin resistance. 
 
One of the challenges in determining the concordance of the 
weakly reversible deficiency zero translation of INRES is the 
running time of the CRNToolbox which was originally 
developed for the Microsoft DOS operating system. For further 
studies, one can look into implementing the Concordance Test 
algorithm by Ji (2011) in MATLAB where it may potentially run 
faster compared with the CRNToolbox. One can also consider 
studying the concordance of huge networks via the Species-
Reaction Graph (Theorem 11.5.1 of Feinberg (2019)). 
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SUPPLEMENTAL INFORMATION 
 
1. CHEMICAL REACTION NETWORK THEORY 
 
A chemical reaction network (CRN) 𝒩 is a triple (𝒮, 𝒞, ℛ) of 
non-empty finite sets 𝒮, 𝒞, and ℛ of 𝑚 species, 𝑛 complexes, 
and 𝑟 reactions, respectively. In a CRN, we denote the species 
as 𝑋', . . . , 𝑋A. This way, 𝑋7 can be identified with the vector in 
ℝA with 1 in the 𝑖th coordinate and zero elsewhere. We denote 
the reactions as 𝑅', . . . , 𝑅9 . We denote the complexes as 
𝐶', . . . , 𝐶I  where the manner in which the complexes are 
numbered play no essential role. A complex 𝐶7 ∈ 𝒞 is given as 
𝐶7 = ∑ 𝑐7F𝑋FA

F='  or as the vector 𝑐7', . . . , 𝑐7A ∈ ℝB(A  (the 
subscript ≥ 0  means we consider only the nonnegative real 
numbers). We define the zero complex as the zero vector in ℝA. 
We denote as 𝐶7 → 𝐶F the reaction where complex 𝐶7 reacts to 
complex 𝐶F . A reaction 𝐶7 → 𝐶F  is called reversible if it is 
accompanied by its reverse reaction 𝐶F → 𝐶7 . Otherwise, it is 
called irreversible. 
 
Let 𝒩 = (𝒮, 𝒞,ℛ) be a CRN. For each reaction 𝐶7 → 𝐶F ∈ ℛ, 
we associate the reaction vector 𝐶F − 𝐶7 ∈ ℝA . The linear 
subspace of ℝA  spanned by the reaction vectors is called the 
stoichiometric subspace of 𝒩, defined as 𝑆 = 𝑠𝑝𝑎𝑛3𝐶F − 𝐶7 ∈
ℝA: 𝐶7 → 𝐶F ∈ ℛ5. The rank of 𝒩 is given by 𝑠 = 𝑑𝑖𝑚(𝑆), i.e., 
the rank of the network is the rank of its set of reaction vectors. 
The stoichiometric matrix 𝑁  is the 𝑚× 𝑟  matrix whose 
columns are the reaction vectors of the system. From the 
definition of stoichiometric subspace, we can see that 𝑆 is the 
image of 𝑁, written as 𝑆 = 𝐼𝑚(𝑁). Observe that 𝑠 = 𝑑𝑖𝑚(𝑆) =
𝑑𝑖𝑚;𝐼𝑚(𝑁)< = 𝑟𝑎𝑛𝑘(𝑁). 
 
CRNs can be viewed as directed graphs where the complexes 
are represented by vertices and the reactions by edges. The 
linkage classes of a CRN are the subnetworks of its reaction 
graph where for any complexes 𝐶7  and 𝐶F  of the subnetwork, 
there is a path between them. The number of linkage classes is 
denoted by ℓ. The deficiency of a CRN is given by 𝛿 = 𝑛 − ℓ −
𝑠. 
 
A kinetics 𝐾 for a CRN 𝒩 = (𝒮, 𝒞,ℛ) is an assignment to each 
reaction 𝐶7 → 𝐶F ∈ ℛ  of a rate function 𝐾J*→J-: ℝB(

A → ℝB( . 
The system (𝒩,𝐾) is called a chemical kinetic system (CKS). 
A kinetics gives rise to two closely related objects: the species 
formation rate function and the associated ordinary differential 
equation system. The species formation rate function (SFRF) 
of a CKS is given by 𝑓(𝑥) = ∑ 𝐾J*→J-(𝑥);𝐶F − 𝐶7<J*→J-  where 
𝑥 is the vector of concentrations of species in 𝒮 and 𝐾J*→J- is the 
rate function assigned to reaction 𝐶7 → 𝐶F ∈ ℛ . The SFRF is 
simply the summation of the reaction vectors for the network, 
each multiplied by the corresponding rate function. Note that the 
SFRF can be written as 𝑓(𝑥) = 𝑁𝐾(𝑥) where 𝐾 the vector of 
rate functions. The equation 𝑥̇ = 𝑓(𝑥)  is the ordinary 
differential equation (ODE) system or dynamical system of 
the CKS. 
 
The reaction vectors of a CRN are positively dependent if, for 
each reaction 𝐶7 → 𝐶F ∈ ℛ , there exists a positive number 
𝛼J*→J-  such that ∑ 𝛼J*→J-;𝐶F − 𝐶7<J*→J- = 0 . CRN with 
positively dependent reaction vectors is said to be positive 
dependent. Shinar and Feinberg (2012) showed that a CKS can 
admit a positive equilibrium only if its reaction vectors are 

positively dependent. The set of positive equilibria of a CKS is 
given by 𝐸H(𝒩,𝐾) = {𝑥 ∈ ℝB(A : 𝑓(𝑥) = 0}. A CRN is said to 
admit multiple (positive) equilibria if there exist positive rate 
constants such that the ODE system admits more than one 
stoichiometrically compatible equilibria. 
 
Let 𝐹  be an 𝑟 ×𝑚  matrix of real numbers. Define 𝑥L  by 
(𝑥L)7 = ∏ 𝑥F

M*-A
F='  for 𝑖 = 1, . . . , 𝑟 . A power law kinetics 

(PLK) assigns to each 𝑖th reaction a function 𝐾7(𝑥) = 𝑘7(𝑥L)7 
with rate constant 𝑘7 > 0  and kinetic order 𝑓7F ∈ ℝ . The 
vector 𝑘 ∈ ℝ9  is called the rate vector and the matrix 𝐹  is 
called the kinetic order matrix. We refer to a CRN with PLK 
as a power law system. The PLK becomes the well-known 
mass action kinetics (MAK) if the kinetic order matrix consists 
of stoichiometric coefficients of the reactants. We refer to a 
CRN with MAK as a mass action system. 
 
A CKS is injective if, for each pair of distinct stoichiometrically 
compatible vectors 𝑥∗, 𝑥∗∗ ∈ ℝB(A , at least one of which is 
positive, ∑ 𝐾J*→J-(𝑥

∗∗);𝐶F − 𝐶7<J*→J- ≠
∑ 𝐾J*→J-(𝑥

∗);𝐶F − 𝐶7<J*→J- . Clearly, an injective kinetic system 
cannot admit two distinct stoichiometrically compatible 
equilibria, at least one of which is positive. A network  𝒩 is 
concordant if and only if for every PLK 𝐾, the kinetic system 
(𝒩,𝐾)  is injective. A network that is not concordant is 
discordant. 
 
The following definition of an embedded network is based on 
Joshi and Shiu (2013). An embedded network of a CRN 𝒩, 
which is defined by a subset of the species set 𝑆 ⊂ 𝒮  and a 
subset of the reactions set 𝑅 ⊂ ℛ, that involves all species of 𝑆 
is the network ;𝑆, 𝒞|O|. , 𝑅|Q< consisting of the reaction set 𝑅|Q. 
 
We define the support of complex 𝐶7 ∈ 𝒞  as 𝑠𝑢𝑝𝑝(𝐶7) =
3𝑋F ∈ 𝑆: 𝑐7F ≠ 05, i.e., it is the set of all species that have nonzero 
stoichiometric coefficients in complex 𝐶7. 
 
The following definition is from Feinberg (2019). A kinetics 𝐾 
for a reaction network (𝒮, 𝒞, ℛ) is differentiably monotonic at 
𝑐∗ ∈ ℝR(A  if for every reaction 𝐶7 ⟶𝐶F ∈ ℛ , 𝐾J*⟶J-(∙)  is 
differentiable at 𝑐∗  and, moreover, for each species 𝑠 ∈ 𝒮 
T
T,/
𝐾J*⟶J-(𝑐

∗) ≥ 0, with inequality holding if and only if 𝑠 ∈
𝑠𝑢𝑝𝑝(𝐶7). A differentiably monotonic kinetics is one that is 
differentiably monotonic at every positive composition. 
 
A kinetics for a CRN is weakly monotonic if, for each pair of 
vectors 𝑥∗, 𝑥∗∗ ∈ ℝB(A , the following implications hold for each 
reaction 𝐶7 ⟶𝐶F ∈ ℛ  such that 𝑠𝑢𝑝𝑝(𝐶7) ⊂ 𝑠𝑢𝑝𝑝(𝑥∗)  and 
𝑠𝑢𝑝𝑝(𝐶7) ⊂ 𝑠𝑢𝑝𝑝(𝑥∗∗): 
 

(i) 𝐾J*⟶J-(𝑥
∗∗) > 𝐾J*⟶J-(𝑥

∗)  implies that there is a 
species 𝑋8 ∈ 𝑠𝑢𝑝𝑝(𝐶7) with 𝑥8∗∗ > 𝑥8∗ . 
 

(ii) 𝐾J*⟶J-(𝑥
∗∗) = 𝐾J*⟶J-(𝑥

∗) implies that 𝑥8∗∗ = 𝑥8∗  for 
all 𝑋8 ∈ 𝑠𝑢𝑝𝑝(𝐶7) or else there are species 𝑋8 , 𝑋8C ∈
𝑠𝑢𝑝𝑝(𝐶7) with 𝑥8∗∗ > 𝑥8∗  and (𝑥8C )∗∗ > (𝑥8C )∗. 

 
We say that a CKS is weakly monotonic when its kinetics is 
weakly monotonic. 
The following is a formulation of the Deficiency Zero Theorem 
of Horn and Jackson (1972): For a mass action system whose 
underlying chemical reaction network is weakly reversible and 
deficiency zero, for any set of rate constants, the system 
maintains precisely one locally asymptotically stable 
equilibrium within each positive stoichiometric compatibility 
class. 
 



 

 
Vol. 17 | No. 02 | 2024                  SciEnggJ  271 

A covering of a CRN 𝒩 is a collection of subsets {ℛ', ⋯ ,ℛ8} 
whose union is ℛ. A covering is called a decomposition of 𝒩 
if the sets ℛ7 form a partition of ℛ. ℛ7 defines a subnetwork 𝒩7 
of 𝒩  where 𝒩7 = (𝒮7 , 𝒞7 , ℛ7)  such that 𝒞7  consists of all 
complexes occurring in ℛ7, and 𝒮7 has all the species occurring 
in 𝒞7. We denote a decomposition as a union of the subnetworks: 
𝒩 =𝒩' ∪⋯∪𝒩8 . A decomposition is independent if the 
stoichiometric subspace 𝑆  of 𝒩  is the direct sum of the 
subnetworks’ stoichiometric subspace 𝑆7. 
 
A network decomposition 𝒩 =𝒩' ∪⋯∪𝒩8 is a refinement 
of 𝒩 =𝒩'C ∪⋯∪𝒩8

C  (and the latter a coarsening of the 
former) if it is induced by a refinement {ℛ', ⋯ ,ℛ8}  of 
{𝑅'C , ⋯ , 𝑅8C } . The decomposition of 𝒩  without independent 
refinement is called the finest independent decomposition of 
𝒩. 
 
2. DEFINITION OF VARIABLES 
 
The following are the variables used in the networks INSulin 
Metabolic Signaling (INSMS) and INsulin RESistance 
(INRES): 
 
𝑋! = Inactive insulin receptors 
𝑋" = Insulin-bound receptors 
𝑋# = Tyrosine-phosphorylated receptors 
𝑋+ = Phosphorylated once-bound surface receptors 
𝑋$ = Internalized dephosphorylated receptors 
𝑋% = Tyrosine-phosphorylated and internalized receptors 
𝑋) = Phosphorylated once-bound intracellular receptors 
𝑋& = Inactive IRS-1 
𝑋'( = Tyrosine-phosphorylated IRS-1 
𝑋'' = Unactivated PI 3-kinase 
𝑋'! =  Tyrosine-phosphorylated IRS-1/activated PI 3-kinase 
complex 
𝑋'" = PI(3,4,5)P3 out of the total lipid population 
𝑋'# = PI(4,5)P2 out of the total lipid population 
𝑋'+ = PI(3,4)P2 out of the total lipid population 
𝑋'$ = Unactivated Akt 
𝑋'% = Activated Akt 
𝑋') = Unactivated PKC-𝜍 
𝑋'& = Activated PKC-𝜍 
𝑋!( = Intracellular GLUT4 
𝑋!' = Cell surface GLUT4 
𝑋!! = Combined tyrosine/serine 307-phosphorylated IRS-1 
𝑋!" = Serine 307-phosphorylated IRS-1 
𝑋!# = Inactive negative feedback 
𝑋!+ = Active negative feedback 
𝑋!$ = Inactive PKB 
𝑋!% = Threonine 308-phosphorylated PKB 
𝑋!) = Serine 473-phosphorylated PKB 
𝑋!& =  Combined threonine 308/serine 473-phosphorylated 
PKB 
𝑋"( = mTORC1 
𝑋"' = mTORC1 involved in phosphorylation of IRS-1 at serine 
307 
𝑋"! = mTORC2 
𝑋"" =  mTORC2 involved in phosphorylation of PKB at 
threonine 473 
𝑋"# = AS160 
𝑋"+ = AS160 phosphorylated at threonine 642 

𝑋"$ = S6K 
𝑋"% = Activated S6K phosphorylated at threonine 389 
𝑋") = S6 
𝑋"& = Activated S6 phosphorylated at serine 235 and serine 236 
𝑋#( = ERK 
𝑋#' = ERK phosphorylated at threonine 202 and tyrosine 204 
𝑋#! = ERK sequestered in an inactive pool 
𝑋#" = Elk1 
𝑋## = Elk1 phosphorylated at serine 383 
 
3. INRES REACTIONS 
 
The following are the reactions of INRES: 
 
𝑅':	𝑋! → 𝑋" 
𝑅):	𝑋$ → 𝑋! 
𝑅&:	𝑋# → 𝑋% 
𝑅'&:	𝑋'( → 𝑋& 
𝑅"':	𝑋!' → 𝑋!( 
𝑅"$:	𝑋! → 𝑋# 
𝑅"%:	𝑋" → 𝑋# 
𝑅"):	𝑋% + 𝑋!+ → 𝑋$ + 𝑋!+ 
𝑅"&:	𝑋# → 𝑋! 
𝑅#(:	𝑋% + 𝑋& → 𝑋% + 𝑋'( 
𝑅#':	𝑋& → 𝑋!" 
𝑅#!:	𝑋'( + 𝑋"' → 𝑋!! + 𝑋"' 
𝑅#":	𝑋!! → 𝑋'( 
𝑅##:	𝑋!! → 𝑋!" 
𝑅#+:	𝑋!" → 𝑋& 
𝑅#$:	𝑋'( + 𝑋!# → 𝑋'( + 𝑋!+ 
𝑅#%:	𝑋!+ → 𝑋!# 
𝑅#):	𝑋'( + 𝑋!$ → 𝑋'( + 𝑋!% 
𝑅#&:	𝑋!% → 𝑋!$ 
𝑅+(:	𝑋!% + 𝑋"" → 𝑋!& + 𝑋"" 
𝑅+':	𝑋!! + 𝑋!) → 𝑋!! + 𝑋!& 
𝑅+!:	𝑋!& → 𝑋!) 
𝑅+":	𝑋!) → 𝑋!$ 
𝑅+#:	𝑋!& + 𝑋"( → 𝑋!& + 𝑋"' 
𝑅++:	𝑋!% + 𝑋"( → 𝑋!% + 𝑋"' 
𝑅+$:	𝑋"' → 𝑋"( 
𝑅+%:	𝑋% + 𝑋"! → 𝑋% + 𝑋"" 
𝑅+):	𝑋"" → 𝑋"! 
𝑅+&:	𝑋!& + 𝑋"# → 𝑋!& + 𝑋"+ 
𝑅$(:	𝑋!) + 𝑋"# → 𝑋!) + 𝑋"+ 
𝑅$':	𝑋"+ → 𝑋"# 
𝑅$!:	𝑋"+ + 𝑋!( → 𝑋"+ + 𝑋!' 
𝑅$":	𝑋"' + 𝑋"$ → 𝑋"' + 𝑋"% 
𝑅$#:	𝑋"% → 𝑋"$ 
𝑅$+:	𝑋"% + 𝑋") → 𝑋"% + 𝑋"& 
𝑅$$:	𝑋") + 𝑋#' → 𝑋"& + 𝑋#' 
𝑅$%:	𝑋"& → 𝑋") 
𝑅$):	𝑋% + 𝑋#( → 𝑋% + 𝑋#' 
𝑅$&:	𝑋!! + 𝑋#( → 𝑋!! + 𝑋#' 
𝑅%(:	𝑋#( → 𝑋#' 
𝑅%':	𝑋#' → 𝑋#! 
𝑅%!:	𝑋#! → 𝑋#( 
𝑅%":	𝑋#' + 𝑋#" → 𝑋#' + 𝑋## 
𝑅%#:	𝑋## → 𝑋#" 
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4. WEAKLY REVERSIBLE DEFICIENCY ZERO TRANSLATION OF INSMS 
 
The following are the reactions of the original (𝒩/0121) and a weakly reversible deficiency zero translation of INSMS (𝒩#,/0121) (a # in 
the superscript means the reaction was translated): 
 

Subnetwork	 𝒩/0121	 	 Subnetwork	 𝒩#,/0121	
𝒩/0121,'	 𝑅':	𝑋! → 𝑋"	

𝑅!:	𝑋" → 𝑋!	
𝑅":	𝑋+ → 𝑋#	
𝑅#:	𝑋# → 𝑋+	
𝑅+:	𝑋" → 𝑋+	
𝑅$:	𝑋+ → 𝑋!	
𝑅%:	𝑋! → 𝑋$	
𝑅):	𝑋$ → 𝑋!	
𝑅&:	𝑋# → 𝑋%	
𝑅'(:	𝑋% → 𝑋#	
𝑅'':	𝑋+ → 𝑋)	
𝑅'!:	𝑋) → 𝑋+	
𝑅'+:	𝑋% → 𝑋$	
𝑅'$:	𝑋) → 𝑋$	

	 𝒩#,/0121,'	 𝑅':	𝑋! → 𝑋"	
𝑅!:	𝑋" → 𝑋!	
𝑅":	𝑋+ → 𝑋#	
𝑅#:	𝑋# → 𝑋+	
𝑅+:	𝑋" → 𝑋+	
𝑅$:	𝑋+ → 𝑋!	
𝑅%:	𝑋! → 𝑋$	
𝑅):	𝑋$ → 𝑋!	
𝑅&:	𝑋# → 𝑋%	
𝑅'(:	𝑋% → 𝑋#	
𝑅'':	𝑋+ → 𝑋)	
𝑅'!:	𝑋) → 𝑋+	
𝑅'+:	𝑋% → 𝑋$	
𝑅'$:	𝑋) → 𝑋$	

𝒩/0121,!	 𝑅'":	0 → 𝑋$	
𝑅'#:	𝑋$ → 0	

	 𝒩#,/0121,!	 𝑅'":	0 → 𝑋$	
𝑅'#:	𝑋$ → 0	

𝒩/0121,"	 𝑅'%:	𝑋& + 𝑋# → 𝑋'( + 𝑋#	
𝑅'):	𝑋& + 𝑋+ → 𝑋'( + 𝑋+	
𝑅'&:	𝑋'( → 𝑋&	

	 𝒩#,/0121,"	 𝑅'%# :	𝑋& → 𝑋'(	
𝑅'&:	𝑋'( → 𝑋&	

𝒩/0121,#	 𝑅!(:	𝑋'( + 𝑋'' → 𝑋'!	
𝑅!':	𝑋'! → 𝑋'( + 𝑋''	

	 𝒩#,/0121,#	 𝑅!(:	𝑋'( + 𝑋'' → 𝑋'!	
𝑅!':	𝑋'! → 𝑋'( + 𝑋''	

𝒩/0121,+	 𝑅!!:	𝑋'# + 𝑋'! → 𝑋'" + 𝑋'!	
𝑅!":	𝑋'" → 𝑋'#	

	 𝒩#,/0121,+	 𝑅!!# :	𝑋'# → 𝑋'"	
𝑅!":	𝑋'" → 𝑋'#	

𝒩/0121,$	 𝑅!#:	𝑋'+ → 𝑋'"	
𝑅!+:	𝑋'" → 𝑋'+	

	 𝒩#,/0121,$	 𝑅!#:	𝑋'+ → 𝑋'"	
𝑅!+:	𝑋'" → 𝑋'+	

𝒩/0121,%	 𝑅!$:	𝑋'$ + 𝑋'" → 𝑋'% + 𝑋'"	
𝑅!%:	𝑋'% → 𝑋'$	

	 𝒩#,/0121,%	 𝑅!$# :	𝑋'$ → 𝑋'%	
𝑅!%:	𝑋'% → 𝑋'$	

𝒩/0121,)	 𝑅!):	𝑋') + 𝑋'" → 𝑋'& + 𝑋'"	
𝑅!&:	𝑋'& → 𝑋')	

	 𝒩#,/0121,)	 𝑅!)# :	𝑋') → 𝑋'&	
𝑅!&:	𝑋'& → 𝑋')	

𝒩/0121,&	 𝑅"(:	𝑋!( → 𝑋!'	
𝑅"':	𝑋!' → 𝑋!(	
𝑅"!:	𝑋!( + 𝑋'% → 𝑋!' + 𝑋'%	
𝑅"":	𝑋!( + 𝑋'& → 𝑋!' + 𝑋'&	

	 𝒩#,/0121,&	 𝑅"(:	𝑋!( → 𝑋!'	
𝑅"':	𝑋!' → 𝑋!(	

𝒩/0121,'(	 𝑅"#:	0 → 𝑋!(	
𝑅"+:	𝑋!( → 0	

	 𝒩#,/0121,'(	 𝑅"#:	0 → 𝑋!(	
𝑅"+:	𝑋!( → 0	

5. WEAKLY REVERSIBLE DEFICIENCY ZERO TRANSLATION OF INRES 
 
The following are the reactions of the original (𝒩/0451) and a weakly reversible deficiency zero translation of INRES (𝒩#,/0451) (a # in 
the superscript means the reaction was translated): 
 

Subnetwork	 𝒩/0451	 	 Subnetwork	 𝒩#,/0451	
𝒩/0451,'	 𝑅':	𝑋! → 𝑋"	

𝑅):	𝑋$ → 𝑋!	
𝑅&:	𝑋# → 𝑋%	
𝑅"$:	𝑋! → 𝑋#	
𝑅"%:	𝑋" → 𝑋#	
𝑅"):	𝑋% + 𝑋!+ → 𝑋$ + 𝑋!+	
𝑅"&:	𝑋# → 𝑋!	

	 𝒩#,/0451,'	 𝑅':	𝑋! → 𝑋"	
𝑅):	𝑋$ → 𝑋!	
𝑅&:	𝑋# → 𝑋%	
𝑅"$:	𝑋! → 𝑋#	
𝑅"%:	𝑋" → 𝑋#	
𝑅")# :	𝑋% → 𝑋$	
𝑅"&:	𝑋# → 𝑋!	

𝒩/0451,!	 𝑅'&:	𝑋'( → 𝑋&	
𝑅#(:	𝑋% + 𝑋& → 𝑋% + 𝑋'(	
𝑅#':	𝑋& → 𝑋!"	
𝑅#!:	𝑋'( + 𝑋"' → 𝑋!! + 𝑋"'	
𝑅#":	𝑋!! → 𝑋'(	
𝑅##:	𝑋!! → 𝑋!"	
𝑅#+:	𝑋!" → 𝑋&	

	 𝒩#,/0451,!	 𝑅'&:	𝑋'( → 𝑋&	
𝑅#(# :	𝑋& → 𝑋'(	
𝑅#':	𝑋& → 𝑋!"	
𝑅#!# :	𝑋'( → 𝑋!!	
𝑅#":	𝑋!! → 𝑋'(	
𝑅##:	𝑋!! → 𝑋!"	
𝑅#+:	𝑋!" → 𝑋&	

𝒩/0451,"	 𝑅#$:	𝑋'( + 𝑋!# → 𝑋'( + 𝑋!+	
𝑅#%:	𝑋!+ → 𝑋!#	

	 𝒩#,/0451,"	 𝑅#$# :	𝑋!# → 𝑋!+	
𝑅#%:	𝑋!+ → 𝑋!#	

𝒩/0451,#	 𝑅#):	𝑋'( + 𝑋!$ → 𝑋'( + 𝑋!%	
𝑅#&:	𝑋!% → 𝑋!$	
𝑅+(:	𝑋!% + 𝑋"" → 𝑋!& + 𝑋""	

	 𝒩#,/0451,#	 𝑅#)# :	𝑋!$ → 𝑋!%	
𝑅#&:	𝑋!% → 𝑋!$	
𝑅+(# :	𝑋!% → 𝑋!&	
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𝑅+':	𝑋!! + 𝑋!) → 𝑋!! + 𝑋!&	
𝑅+!:	𝑋!& → 𝑋!)	
𝑅+":	𝑋!) → 𝑋!$	

𝑅+'# :	𝑋!) → 𝑋!&	
𝑅+!:	𝑋!& → 𝑋!)	
𝑅+":	𝑋!) → 𝑋!$	

𝒩/0451,+	 𝑅+#:	𝑋!& + 𝑋"( → 𝑋!& + 𝑋"'	
𝑅++:	𝑋!% + 𝑋"( → 𝑋!% + 𝑋"'	
𝑅+$:	𝑋"' → 𝑋"(	

	 𝒩#,/0451,+	 𝑅+## :	𝑋"( → 𝑋"'	
𝑅+$:	𝑋"' → 𝑋"(	

𝒩/0451,$	 𝑅+%:	𝑋% + 𝑋"! → 𝑋% + 𝑋""	
𝑅+):	𝑋"" → 𝑋"!	

	 𝒩#,/0451,$	 𝑅+%# :	𝑋"! → 𝑋""	
𝑅+):	𝑋"" → 𝑋"!	

𝒩/0451,%	 𝑅+&:	𝑋!& + 𝑋"# → 𝑋!& + 𝑋"+	
𝑅$(:	𝑋!) + 𝑋"# → 𝑋!) + 𝑋"+	
𝑅$':	𝑋"+ → 𝑋"#	

	 𝒩#,/0451,%	 𝑅+&# :	𝑋"# → 𝑋"+	
𝑅$':	𝑋"+ → 𝑋"#	

𝒩/0451,)	 𝑅"':	𝑋!' → 𝑋!(	
𝑅$!:	𝑋"+ + 𝑋!( → 𝑋"+ + 𝑋!'	

	 𝒩#,/0451,)	 𝑅"':	𝑋!' → 𝑋!(	
𝑅$!# :	𝑋!( → 𝑋!'	

𝒩/0451,&	 𝑅$":	𝑋"' + 𝑋"$ → 𝑋"' + 𝑋"%	
𝑅$#:	𝑋"% → 𝑋"$	

	 𝒩#,/0451,&	 𝑅$"# :	𝑋"$ → 𝑋"%	
𝑅$#:	𝑋"% → 𝑋"$	

𝒩/0451,'(	 𝑅$+:	𝑋"% + 𝑋") → 𝑋"% + 𝑋"&	
𝑅$$:	𝑋") + 𝑋#' → 𝑋"& + 𝑋#'	
𝑅$%:	𝑋"& → 𝑋")	

	 𝒩#,/0451,'(	 𝑅$+# :	𝑋") → 𝑋"&	
𝑅$%:	𝑋"& → 𝑋")	

𝒩/0451,''	 𝑅$):	𝑋% + 𝑋#( → 𝑋% + 𝑋#'	
𝑅$&:	𝑋!! + 𝑋#( → 𝑋!! + 𝑋#'	
𝑅%(:	𝑋#( → 𝑋#'	
𝑅%':	𝑋#' → 𝑋#!	
𝑅%!:	𝑋#! → 𝑋#(	

	 𝒩#,/0451,''	 𝑅%(:	𝑋#( → 𝑋#'	
𝑅%':	𝑋#' → 𝑋#!	
𝑅%!:	𝑋#! → 𝑋#(	

𝒩/0451,'!	 𝑅%":	𝑋#' + 𝑋#" → 𝑋#' + 𝑋##	
𝑅%#:	𝑋## → 𝑋#"	

	 𝒩#,/0451,'!	 𝑅%"# :	𝑋#" → 𝑋##	
𝑅%#:	𝑋## → 𝑋#"	
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